Periodic Quadratic Spline Interpolant of Minimal Norm

Günter Meinardus

Fachbereich Mathematik, University of Siegen, D-5900 Siegen 21, West Germany

AND

G. D. TAYLOR*

Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523 Communicated by Oved Shisha Received October 8, 1976

1. INTRODUCTION

Let $K = \{x_0, ..., x_n\}$ be a partition of $[0, 1], 0 = x_0 < x_1 < \cdots < x_n = 1$. The class of all periodic quadratic splines with respect to this partition, $S_3(K)$, is defined to be the set of all $s \in C^1[0, 1]$ such that s(x) restricted to $[x_{\nu-1}, x_\nu]$ is a real algebraic polynomial of degree 2 and $s^{(i)}(x_0) = s^{(i)}(x_n)$, j = 0, 1. It is well known that each $s \in S_3(K)$ is uniquely determined by its values at $x_1, ..., x_n$ if and only if n is odd [2]. Thus, we shall assume that nis odd henceforth. Define $h_\nu = x_\nu - x_{\nu-1}$; $h_{\nu+n} = h_\nu$, $\nu = 1, ..., n$, $H = \text{diag}(h_1, ..., h_n)$ a $n \times n$ matrix and $\Gamma(H)$ a mapping from C[0, 1]with the uniform norm, $||h|| = \max\{|h(t)|: 0 \leq t \leq 1\}$, to $S_3(K)$ by

 $\Gamma(H)f=s_f(x),$

where $s_f(x)$ is the unique spline in $S_3(K)$ satisfying $s_f(x_i) = f(x_i)$, i = 1,..., n. $\Gamma(H)$ is a projection operator onto $S_3(K)$. Norming $S_3(K)$ with the uniform norm, then we may define

$$\|\Gamma(H)\| = \sup_{\|f\|\leqslant 1} \|\Gamma(H)f\|.$$

The result that we wish to prove is:

THEOREM 1. Let $n \ge 3$ be an odd integer. Then

$$\inf_{K \in \mathscr{K}} \| \Gamma(H) \| = \| \Gamma(\hat{H}) \| = (n+1)/2,$$

* Supported in part by the Air Force Office of Scientific Research, Air Force Systems Command, USAF, under Grant AFOSR-76-2878.

MEINARDUS AND TAYLOR

where $\hat{H} = \text{diag}(1/n, 1/n, ..., 1/n)$ is the matrix corresponding to the partition \hat{K} of equally spaced knots, \mathscr{K} denotes the set of all partitions of [0, 1] into n distinct subintervals. In addition, $\|\Gamma(H)\|$ is the only global minimum for this problem.

That is, the periodic quadratic spline interpolant (projector operator) of minimal norm corresponds uniquely to the case of equally spaced knots for n odd. For a survey of results concerning projections of minimal norm see [1].

2. NOTATION AND PROOF

The method of establishing this result will be to rephrase this problem in a vector-valued polynomial setting as done recently in [3]. The advantage of this approach is that it allows us to treat this problem in a purely algebraic manner. Specifically, let Π_2 denote the collection of all real-valued polynomials of degree 2 or less and let Π_2^n denote the class of all *n*-dimensional vector-valued polynomials of degree ≤ 2 , i.e., $\mathbf{q} \in \Pi_2^n$ if and only if $\mathbf{q}(t) =$ $(q_1(t),..., q_n(t))^T$ with $q_i(t) \in \Pi_2$ for i = 1,..., n. Norm Π_2^n with the norm $\|\mathbf{q}\|_n = \max_{1 \leq i \leq n} \|q_i\| = \max_{1 \leq i \leq n} (\max_{0 \leq i \leq 1} |q_i(t)|)$. Define the $n \times n$ matrices A and T by $A = \text{diag}(\alpha_1,..., \alpha_n)$ where $\alpha_v = h_{v+1}/h_v$ for all v and

$$T = \begin{pmatrix} 0 & \cdots & 1 \\ 1 & \cdots & \vdots \\ & \ddots & \vdots \\ & & 1 & 0 \end{pmatrix}.$$

Note that $T^*T = I$, $T^n = I$, $A = T^*HTH^{-1}$ where the asterisk denotes the Hermitian conjugate.

For each $s \in S_3(K)$ set $s(x) = s_{\nu}(x)$ for $x \in [x_{\nu-1}, x_{\nu}]$, $\nu = 1, ..., n$. Define a mapping \overline{T} of $S_3(K)$ into Π_2^n by $\overline{T}s = \mathbf{q} = (q_1, ..., q_n)^T$ where $q_{\nu}(t) = s_{\nu}(x_{\nu-1} + t(x_{\nu} - x_{\nu-1}))$, $\nu = 1, ..., n$, $t \in [0, 1]$. Let $\overline{S}_3(K)$ denote the image of $S_3(K)$ under \overline{T} . It is easily seen that $\mathbf{q} \in \overline{S}_3(K)$ if and only if $\mathbf{q}^{(j)}(0) = TA^j \mathbf{q}^{(j)}(1)$, j = 0, 1 where $\mathbf{q}_1^{(j)}(t) = (q_1^{(j)}(t), ..., q_n^{(j)}(t))^T$ and \overline{T} is an isomorphic isometry between $S_3(K)$ and $\overline{S}_3(K)$. Let $\mathbf{q}_1, ..., \mathbf{q}_n$ be a set of *n* functions in Π_2^n where $\mathbf{q}_i = (q_{1i}, ..., q_{ni})^T$, i = 1, ..., n. Define the $n \times n$ matrix W(t, A) with respect to this set by

$$W(t, A) = (\mathbf{q}_1(t), \dots, \mathbf{q}_n(t))$$
$$= \begin{pmatrix} q_{11}(t) & \cdots & q_{1n}(t) \\ \vdots & & \vdots \\ q_{n1}(t) & \cdots & q_{nn}(t) \end{pmatrix}$$

If $\{\mathbf{q}_1, ..., \mathbf{q}_n\}$ is a basis for $\overline{S}_3(K)$ then we shall call W(t, A) a basis matrix.

138

Note that $\{\mathbf{q}_1, ..., \mathbf{q}_n\}$ is a basis for $\overline{S}_3(K)$ if and only if $\{\overline{T}^{-1}\mathbf{q}_1, ..., \overline{T}^{-1}\mathbf{q}_n\}$ is a basis for $S_3(K)$. If W(t, A) is a basis matrix then for $\mathbf{c} = (c_1, ..., c_n)^T \in \mathbb{R}^n$, $\mathbf{q}(t) = W(t, A) \mathbf{c} = \sum_{j=1}^n c_j \mathbf{q}_j(t) \in S_3(K)$. The following facts are easily proven for the matrix W(t, A):

LEMMA 1. Let B be a nonsingular $n \times n$ matrix and set $W(t, A) \cdot B = (\mathbf{v}_1(t),...,\mathbf{v}_n(t))$ where W(t, A) is a basis matrix. Then $\{\mathbf{v}_1(t),...,\mathbf{v}_n(t)\}$ is a basis for $\overline{S}_3(K)$.

LEMMA 2. If $W^{(j)}(0, A) = TA^{j}W^{(j)}(1, A)$, j = 0, 1 and there exists $\tau \in [0, 1]$ such that $W^{-1}(\tau, A)$ exists then W(t, A) is a basis matrix.

LEMMA 3. Fix $\tau \in [0, 1]$. Then corresponding to each $\mathbf{y} \in \mathbb{R}^n$ there exists a unique $\mathbf{q} \in \overline{S}_3(K)$ such that $\mathbf{q}(\tau) = \mathbf{y}$ if and only if $W^{-1}(\tau, A)$ exists for each basis matrix W(t, A).

LEMMA 4. Let n be odd integer. Then $W^{-1}(1, A)$ exists for each basis matrix W(t, A).

Define the mapping $\overline{\Gamma}(H)$ of C[0, 1] into $\overline{S}_{3}(K)$ by

$$\overline{\Gamma}(H)f = W(t,A)\mathbf{f},$$

where $\mathbf{f} = (f(x_1),..., f(x_n))^T$ and $W(t, A) = (\mathbf{q}_1(t),..., \mathbf{q}_n(t))$ is a basis matrix that satisfies: (1) W(1, A) = I, (2) W(0, A) = T and (3) W'(0, A) = TAW'(1, A). That such a basis matrix exists follows from Lemmas 1, 2, and 4. Observing that $\overline{\Gamma}(H)f = \overline{T}\Gamma(H)f$ for all $f \in C[0, 1]$, we have that

$$\| \Gamma(H) \| = \| \Gamma(H) \| = \sup_{\|f\| \le 1} \| W(t, A) \mathbf{f} \|_n$$

= $\sup_{\|f\| \le 1} (\max_{1 \le i \le n} \| f(x_1) q_{i1}(t) + \dots + f(x_n) q_{in}(t) \|)$
= $\max_{0 \le t \le 1} |\max_{1 \le i \le n} (|q_{i1}(t)| + \dots + |q_{in}(t)|)|$
= $\max_{0 \le t \le 1} \| W(t, A) \|_{\infty}$,

where $|| B ||_{\infty}$ denotes the maximum absolute row sum of B.

Thus, we wish to estimate

$$\inf_{A\in\mathcal{A}}(\max_{0\leqslant t\leqslant 1}\|W(t,A)\|_{\infty}),$$

where $\mathcal{O} = \{A: A = \text{diag}(\alpha_1, ..., \alpha_n) \text{ with } \alpha_i > 0 \text{ for all } i \text{ and } \prod_{i=1}^n \alpha_i = 1\}.$ Since the set \mathcal{O} is in a 1-1 correspondence with \mathscr{K} this is a rephrasing of the minimal periodic quadratic spline projection problem. Thus, Theorem 1 follows from

THEOREM 2. Let n be an odd integer. Then

$$\max_{0 \leqslant t \leqslant 1} \| W(t, A) \|_{\infty} = \frac{1}{2} + \frac{1}{2} (\max_{1 \leqslant t \leqslant n} h_{j}) \sum_{i=1}^{n} \frac{1}{h_{i}} \ge \max_{0 \leqslant t \leqslant 1} \| W(t, I) \|_{\infty} = \frac{n+1}{2},$$

where A = I is the only global minimum, (A = I is equivalent to equally spaced knots.)

Proof. Suppose $W(t, A) = (\mathbf{q}_1, ..., \mathbf{q}_n)$ where $\mathbf{q}_i = (q_{1i}, ..., q_{ni})^T$, i = 1, ..., n. Since t^2 , $(1 - t)^2$, 2t(1 - t) forms a basis for Π_2 we may write each $q_{ij}(t) = b_{ij}^{(1)}t^2 + b_{ij}^{(2)}(1 - t)^2 + 2b_{ij}^{(3)}t(1 - t)$ and hence

$$W(t, A) = t^{2}M + (1 - t)^{2}L + 2t(1 - t)K,$$

where M, L and K are $n \times n$ real matrices. Since W(1, A) = I and W(0, A) = T we must have

$$W(t, A) = t^2 I + (1 - t)^2 T + 2t(1 - t) K.$$

Differentiating with respect to t, gives

$$W'(t, A) = 2tI - 2(1 - t) T + 2(1 - 2t) K$$

so that W'(0, A) = -2T + 2K and W'(1, A) = 2I - 2K. Thus, K must satisfy

$$-T+K=TA(I-K).$$

Solving for K, using the identities $TA = HTH^{-1}$ and $T^*T = I$ gives

$$K = HT(I + T)^{-1}(H^{-1} + T^*H^{-1}T).$$

Next, observe that since $T^n = I$,

$$(I+T)(I-T+T^2-\dots+(-1)^{n-1}T^{n-1})=I+(-1)^{n-1}I=2I$$

since n is odd. Thus,

$$2T(I+T)^{-1} = I + \sum_{\nu=1}^{n-1} (-1)^{\nu-1} T^{\nu}$$

and

$$2K = H\left(I + \sum_{\nu=1}^{n-1} (-1)^{\nu-1} T^{\nu}\right) (H^{-1} + T^* H^{-1} T).$$

Noting that

$$H = \operatorname{diag}(h_1, ..., h_n) \quad \text{and}$$
$$(H^{-1} + T^* H^{-1} T) = \operatorname{diag}\left(\frac{1}{h_1} + \frac{1}{h_2}, ..., \frac{1}{h_{n-1}} + \frac{1}{h_n}, \frac{1}{h_n} + \frac{1}{h_1}\right),$$

it follows that K has positive entries in all positions where either I or T have positive entries. Since t^2 , $(1 - t)^2$ and t(1 - t) are nonnegative for $t \in [0, 1]$ we have that

$$\| W(t, A) \|_{\infty} = \max_{1 \le i \le n} \left[t^2 + (1 - t)^2 + t(1 - t) h_i \sum_{j=1}^n \left(\frac{1}{h_j} + \frac{1}{h_{j+1}} \right) \right]$$
$$= t^2 + (1 - t)^2 + 2t(1 - t) \sum_{j=1}^n \frac{1}{h_j} \left(\max_{1 \le i \le n} h_i \right)$$
$$\ge t^2 + (1 - t)^2 + 2t(1 - t) \cdot n$$

with equally if and only if $h_j = \max_{1 \le i \le n} h_i$ for j = 1, ..., n,

$$\geq (\frac{1}{2})^2 + (\frac{1}{2})^2 + 2(\frac{1}{2})(\frac{1}{2}) n = \frac{1}{2}(n+1).$$

REFERENCES

- 1. E. W. CHENEY AND K. H. PRICE, Minimal projections, in "Approximation Theory" (A. Talbot, Ed.) pp. 261–289, Academic Press, New York, 1970.
- 2. F. KRINZESZA, "Zur periodischen Spline-Interpolation," Dissertation, Bochum, 1969.
- 3. G. MEINARDUS, Periodische Splinefunktionen, in "Spline Functions: Proceedings of an International Symposium held at Karlsruhe, Germany, May 20–23, 1975" (K. Bohmer, G. Meinardus, and W. Schempp, Eds.), pp. 177–199, Springer-Verlag, Berlin, 1976.