Periodic Quadratic Spline Interpolant of Minimal Norm

Günter Meinardus

Fachbereich Mathematik, University of Siegen, D-5900 Siegen 21, West Germany
AND
G. D. Taylor*

Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523
Communicated by Oved Shisha
Received October 8, 1976

1. Introduction

Let $K=\left\{x_{0}, \ldots, x_{n}\right\}$ be a partition of $[0,1], 0=x_{0}<x_{1}<\cdots<x_{n}=1$. The class of all periodic quadratic splines with respect to this partition, $S_{3}(K)$, is defined to be the set of all $s \in C^{1}[0,1]$ such that $s(x)$ restricted to $\left[x_{\nu-1}, x_{\nu}\right]$ is a real algebraic polynomial of degree 2 and $s^{(j)}\left(x_{0}\right)=s^{(j)}\left(x_{n}\right)$, $j=0,1$. It is well known that each $s \in S_{3}(K)$ is uniquely determined by its values at x_{1}, \ldots, x_{n} if and only if n is odd [2]. Thus, we shall assume that n is odd henceforth. Define $h_{\nu}=x_{\nu}-x_{\nu-1} ; h_{\nu+n}=h_{\nu}, \quad \nu=1, \ldots, n$, $H=\operatorname{diag}\left(h_{1}, \ldots, h_{n}\right)$ a $n \times n$ matrix and $\Gamma(H)$ a mapping from $C[0,1]$ with the uniform norm, $\|h\|=\max \{|h(t)|: 0 \leqslant t \leqslant 1\}$, to $S_{3}(K)$ by

$$
\Gamma(H) f=s_{f}(x)
$$

where $s_{f}(x)$ is the unique spline in $S_{3}(K)$ satisfying $s_{f}\left(x_{i}\right)=f\left(x_{i}\right), i=1, \ldots, n$. $\Gamma(H)$ is a projection operator onto $S_{3}(K)$. Norming $S_{3}(K)$ with the uniform norm, then we may define

$$
\|\Gamma(H)\|=\sup _{\|f\| \leqslant 1}\|\Gamma(H) f\| .
$$

The result that we wish to prove is:
Theorem 1. Let $n \geqslant 3$ be an odd integer. Then

$$
\inf _{K \in \mathscr{C}}\|\Gamma(H)\|=\|\Gamma(\hat{H})\|=(n+1) / 2
$$

[^0]where $\hat{H}=\operatorname{diag}(1 / n, 1 / n, \ldots, 1 / n)$ is the matrix corresponding to the partition \hat{K} of equally spaced knots, \mathscr{K} denotes the set of all partitions of $[0,1]$ into n distinct subintervals. In addition, $\|\Gamma(H)\|$ is the only global minimum for this problem.

That is, the periodic quadratic spline interpolant (projector operator) of minimal norm corresponds uniquely to the case of equally spaced knots for n odd. For a survey of results concerning projections of minimal norm see [1].

2. Notation and Proof

The method of establishing this result will be to rephrase this problem in a vector-valued polynomial setting as done recently in [3]. The advantage of this approach is that it allows us to treat this problem in a purely algebraic manner. Specifically, let Π_{2} denote the collection of all real-valued polynomials of degree 2 or less and let $\Pi_{2}{ }^{n}$ denote the class of all n-dimensional vector-valued polynomials of degree $\leqslant 2$, i.e., $\mathbf{q} \in \Pi_{2}{ }^{n}$ if and only if $\mathbf{q}(t)=$ $\left(q_{1}(t), \ldots, q_{n}(t)\right)^{T}$ with $q_{i}(t) \in \Pi_{2}$ for $i=1, \ldots, n$. Norm $\Pi_{2}{ }^{n}$ with the norm $\|\mathbf{q}\|_{n}=\max _{1 \leqslant i \leqslant n}\left\|q_{i}\right\|=\max _{1 \leqslant i \leqslant n}\left(\max _{0 \leqslant t \leqslant 1}\left|q_{i}(t)\right|\right)$. Define the $n \times n$ matrices A and T by $A=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ where $\alpha_{v}=h_{\nu+1} / h_{\nu}$ for all ν and

$$
T=\left(\begin{array}{cccc}
0 & \cdots & \cdots & 1 \\
1 & \ddots & & \\
& \ddots & \\
& & 1 & 0
\end{array}\right)
$$

Note that $T^{*} T=I, T^{n}=I, A=T^{*} H T H^{-1}$ where the asterisk denotes the Hermitian conjugate.

For each $s \in S_{3}(K)$ set $s(x)=s_{\nu}(x)$ for $x \in\left[x_{v-1}, x_{\nu}\right], v=1, \ldots, n$. Define a mapping \bar{T} of $S_{3}(K)$ into $\Pi_{2}{ }^{n}$ by $\bar{T} s=\mathbf{q}=\left(q_{1}, \ldots, q_{n}\right)^{T}$ where $q_{v}(t)=$ $s_{\nu}\left(x_{\nu-1}+t\left(x_{\nu}-x_{v-1}\right)\right), \nu=1, \ldots, n, t \in[0,1]$. Let $\bar{S}_{3}(K)$ denote the image of $S_{3}(K)$ under \bar{T}. It is easily seen that $\mathbf{q} \in \bar{S}_{3}(K)$ if and only if $\mathbf{q}^{(j)}(0)=T A^{j} \mathbf{q}^{(j)}(1)$, $j=0,1$ where $q_{1}^{(j)}(t)=\left(q_{1}^{(j)}(t), \ldots, q_{n}^{(j)}(t)\right)^{T}$ and \bar{T} is an isomorphic isometry between $S_{3}(K)$ and $\bar{S}_{3}(K)$. Let $\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}$ be a set of n functions in $\Pi_{2}{ }^{n}$ where $\mathbf{q}_{i}=\left(q_{1 i}, \ldots, q_{n i}\right)^{T}, i=1, \ldots, n$. Define the $n \times n$ matrix $W(t, A)$ with respect to this set by

$$
\begin{aligned}
W(t, A) & =\left(\mathbf{q}_{1}(t), \ldots, \mathbf{q}_{n}(t)\right) \\
& =\left(\begin{array}{ccc}
q_{11}(t) & \cdots & q_{1 n}(t) \\
\vdots & & \vdots \\
q_{n \mathbf{1}}(t) & \cdots & q_{n n}(t)
\end{array}\right) .
\end{aligned}
$$

If $\left\{\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right\}$ is a basis for $\bar{S}_{3}(K)$ then we shall call $W(t, A)$ a basis matrix.

Note that $\left\{\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right\}$ is a basis for $\bar{S}_{3}(K)$ if and only if $\left\{\bar{T}^{-1} \mathbf{q}_{1}, \ldots, \bar{T}^{-1} \mathbf{q}_{n}\right\}$ is a basis for $S_{\mathbf{3}}(K)$. If $W(t, A)$ is a basis matrix then for $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)^{T} \in \mathbb{R}^{n}$, $\mathbf{q}(t)=W(t, A) \mathbf{c}=\sum_{j=1}^{n} c_{j} \mathbf{q}_{j}(t) \in S_{3}(K)$. The following facts are easily proven for the matrix $W(t, A)$:

Lemma 1. Let B be a nonsingular $n \times n$ matrix and set $W(t, A) \cdot B=$ $\left(\mathbf{v}_{\mathbf{1}}(t), \ldots, \mathbf{v}_{n}(t)\right)$ where $W(t, A)$ is a basis matrix. Then $\left\{\mathbf{v}_{1}(t), \ldots, \mathbf{v}_{n}(t)\right\}$ is a basis for $\bar{S}_{3}(K)$.

Lemma 2. If $W^{(j)}(0, A)=T A^{j} W^{(j)}(1, A), j=0,1$ and there exists $\tau \in[0,1]$ such that $W^{-1}(\tau, A)$ exists then $W(t, A)$ is a basis matrix.

Lemma 3. Fix $\tau \in[0,1]$. Then corresponding to each $\mathbf{y} \in \mathbb{R}^{n}$ there exists a unique $\mathbf{q} \in \bar{S}_{3}(K)$ such that $\mathbf{q}(\tau)=\mathbf{y}$ if and only if $W^{-1}(\tau, A)$ exists for each basis matrix $W(t, A)$.

Lemma 4. Let n be odd integer. Then $W^{-1}(1, A)$ exists for each basis matrix $W(t, A)$.

Define the mapping $\bar{\Gamma}(H)$ of $C[0,1]$ into $\bar{S}_{3}(K)$ by

$$
\bar{\Gamma}(H) f=W(t, A) \mathbf{f},
$$

where $\mathbf{f}=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)^{T}$ and $W(t, A)=\left(\mathbf{q}_{1}(t), \ldots, \mathbf{q}_{n}(t)\right)$ is a basis matrix that satisfies: (1) $W(1, A)=I$, (2) $W(0, A)=T$ and (3) $W^{\prime}(0, A)=$ $T A W^{\prime}(1, A)$. That such a basis matrix exists follows from Lemmas 1,2 , and 4. Observing that $\bar{\Gamma}(H) f=\bar{T} \Gamma(H) f$ for all $f \in C[0,1]$, we have that

$$
\begin{aligned}
\|\Gamma(H)\| & =\|\bar{\Gamma}(H)\|=\sup _{\|f\| \leqslant 1}\|W(t, A) \mathbf{f}\|_{n} \\
& =\sup _{\|f\| \leqslant 1}\left(\max _{1 \leqslant i \leqslant n}\left\|f\left(x_{1}\right) q_{i 1}(t)+\cdots+f\left(x_{n}\right) q_{i n}(t)\right\|\right) \\
& =\max _{0 \leqslant t i v 1}\left|\max _{1 \leqslant i \leqslant n}\left(\left|q_{i 1}(t)\right|+\cdots+\left|q_{i n}(t)\right|\right)\right| \\
& =\max _{0 \leqslant t \leqslant 1}\|W(t, A)\|_{\infty},
\end{aligned}
$$

where $\|B\|_{\infty}$ denotes the maximum absolute row sum of B.
Thus, we wish to estimate

$$
\inf _{A \in G}\left(\max _{0 \leqslant 1 \leqslant 1}\|W(t, A)\|_{\infty}\right),
$$

where $O \mathcal{O}=\left\{A: A=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right.$ with $\alpha_{i}>0$ for all i and $\left.\prod_{i=1}^{n} \alpha_{i}=1\right\}$. Since the set \mathscr{O} is in a 1-1 correspondence with \mathscr{K} this is a rephrasing of the
minimal periodic quadratic spline projection problem. Thus, Theorem 1 follows from

Theorem 2. Let n be an odd integer. Then

$\max _{0 \leqslant t \leqslant 1}\|W(t, A)\|_{\infty}=\frac{1}{2}+\frac{1}{2}\left(\max _{1 \leqslant t \leqslant n} h_{j}\right) \sum_{i=1}^{n} \frac{1}{h_{i}} \geqslant \max _{0 \leqslant t \leqslant 1}\|W(t, I)\|_{\infty}=\frac{n+1}{2}$,
where $A=I$ is the only global minimum, $(A=I$ is equivalent to equally spaced knots.)

Proof. Suppose $W(t, A)=\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right) \quad$ where $\quad \mathbf{q}_{i}=\left(q_{1 i}, \ldots, q_{n i}\right)^{T}$, $i=1, \ldots, n$. Since $t^{2},(1-t)^{2}, 2 t(1-t)$ forms a basis for Π_{2} we may write each $q_{i j}(t)=b_{i j}^{(1)} t^{2}+b_{i j}^{(2)}(1-t)^{2}+2 b_{i j}^{(3)} t(1-t)$ and hence

$$
W(t, A)=t^{2} M+(1-t)^{2} L+2 t(1-t) K
$$

where M, L and K are $n \times n$ real matrices. Since $W(1, A)=I$ and $W(0, A)=T$ we must have

$$
W(t, A)=t^{2} I+(1-t)^{2} T+2 t(1-t) K
$$

Differentiating with respect to t, gives

$$
W^{\prime}(t, A)=2 t I-2(1-t) T+2(1-2 t) K
$$

so that $W^{\prime}(0, A)=-2 T+2 K$ and $W^{\prime}(1, A)=2 I-2 K$. Thus, K must satisfy

$$
-T+K=T A(I-K)
$$

Solving for K, using the identities $T A=H T H^{-1}$ and $T^{*} T=I$ gives

$$
K=H T(I+T)^{-1}\left(H^{-1}+T^{*} H^{-1} T\right)
$$

Next, observe that since $T^{n}=I$,

$$
(I+T)\left(I-T+T^{2}-\cdots+(-1)^{n-1} T^{n-1}\right)=I+(-1)^{n-1} I=2 I
$$

since n is odd. Thus,

$$
2 T(I+T)^{-1}=I+\sum_{\nu=1}^{n-1}(-1)^{\nu-1} T^{\nu}
$$

and

$$
2 K=H\left(I+\sum_{\nu=1}^{n-1}(-1)^{\nu-1} T^{\nu}\right)\left(H^{-1}+T^{*} H^{-1} T\right)
$$

Noting that

$$
\begin{aligned}
H & =\operatorname{diag}\left(h_{1}, \ldots, h_{n}\right) \quad \text { and } \\
\left(H^{-1}+T^{*} H^{-1} T\right) & =\operatorname{diag}\left(\frac{1}{h_{1}}+\frac{1}{h_{2}}, \ldots, \frac{1}{h_{n-1}}+\frac{1}{h_{n}}, \frac{1}{h_{n}}+\frac{1}{h_{1}}\right)
\end{aligned}
$$

it follows that K has positive entries in all positions where either I or T have positive entries. Since $t^{2},(1-t)^{2}$ and $t(1-t)$ are nonnegative for $t \in[0,1]$ we have that

$$
\begin{aligned}
\|W(t, A)\|_{\infty} & =\max _{1 \leqslant i \leqslant n}\left[t^{2}+(1-t)^{2}+t(1-t) h_{i} \sum_{j=1}^{n}\left(\frac{1}{h_{j}}+\frac{1}{h_{j+1}}\right)\right] \\
& =t^{2}+(1-t)^{2}+2 t(1-t) \sum_{j=1}^{n} \frac{1}{h_{j}}\left(\max _{1 \leqslant i \leqslant n} h_{i}\right) \\
& \geqslant t^{2}+(1-t)^{2}+2 t(1-t) \cdot n
\end{aligned}
$$

with equally if and only if $h_{j}=\max _{1 \leqslant i \leqslant n} h_{i}$ for $j=1, \ldots, n$,

$$
\geqslant\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}+2\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) n=\frac{1}{2}(n+1)
$$

References

1. E. W. Cheney and K. H. Price, Minimal projections, in "Approximation Theory" (A. Talbot, Ed.) pp. 261-289, Academic Press, New York, 1970.
2. F. Krinzesza, "Zur periodischen Spline-Interpolation," Dissertation, Bochum, 1969.
3. G. Meinardus, Periodische Splinefunktionen, in "Spline Functions: Proceedings of an International Symposium held at Karlsruhe, Germany, May 20-23, 1975" (K. Bohmer, G. Meinardus, and W. Schempp, Eds.), pp. 177-199, Springer-Verlag, Berlin, 1976.

[^0]: * Supported in part by the Air Force Office of Scientific Research, Air Force Systems Command, USAF, under Grant AFOSR-76-2878.

