JOURNAL OF APPROXIMATION THEORY 23, 137-141 (1978)

Periodic Quadratic Spline Interpolant of Minimal Norm
GUNTER MEINARDUS

Fachbereich Mathematik, University of Siegen, D-5900 Siegen 21, West Germany
AND

G. D. TAYLOR*

Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523
Communicated by Oved Shisha
Received October 8, 1976

1. INTRODUCTION

Let K = {xq ,..., X} be a partition of [0, 1],0 = x, < x; < =* < x,, = L.
The class of all periodic quadratic splines with respect to this partition,
S3(K), is defined to be the set of all s € C*[0, 1] such that s(x) restricted to
[x,.1,x,] is a real algebraic polynomial of degree 2 and s'(xg) = s(x,),
Jj=0,1. It is well known that each s € S4(K) is uniquely determined by its
values at x, ,..., x,, if and only if »n is odd [2]. Thus, we shall assume that »
is odd henceforth. Define &, =x, — x,.;; By =h,, v=1,..,n,
H == diag(h, ,..., h,) a n X n matrix and I'(H) a mapping from C[0, 1]
with the uniform norm, || 2 || = max{| A(t)]: 0 < t < 1}, to S(K) by

T(H) f = s¢(x),

where s,(x) is the unique spline in Sy(K) satisfying s(x;) = f(x,), i = 1,..., n.
I'(H) is a projection operator onto S;(K). Norming Sy(K) with the uniform
norm, then we may define

|| (D) = sup I T(H) fl.

fll<1

The result that we wish to prove is:

THEOREM 1. Let n > 3 be an odd integer. Then
inf | TEDI = | TED) = (2 + 12,
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where H = diag(1/n, 1/n,..., 1/n) is the matrix corresponding to the partition
K of equally spaced knots, A" denotes the set of all partitions of [0, 1] into n
distinct subintervals. In addition, || I'(H)| is the only global minimum for this
problem.

That is, the periodic quadratic spline interpolant (projector operator) of
minimal norm corresponds uniquely to the case of equally spaced knots
for n odd. For a survey of results concerning projections of minimal norm
see [1].

2. NOTATION AND PROOF

The method of establishing this result will be to rephrase this problem in
a vector-valued polynomial setting as done recently in [3]. The advantage
of this approach is that it allows us to treat this problem in a purely algebraic
manner. Specifically, let 11, denote the collection of all real-valued poly-
nomials of degree 2 or less and let IL," denote the class of all n-dimensional
vector-valued polynomials of degree <2, i.e., q € IL," if and only if q(¢) =
(qy()s--., g )T with ¢, (t)ell, for i = 1,...,n. Norm IL,* with the norm

llqlln = maxigicqll ¢; | = max;cica(maxoci<y | 4:¢))). Define the n X n
matrices 4 and T by A = diag(ey ..., ) Where o, = h,,,/h, for all v and
0.1 m’;
T 1 -- .
= - %
10 wif
AR

Note that T*T = I, T® = I, A = T*HTH where the asterisk denotes the
Hermitian conjugate.

For each s S3(K) set s(x) = sx) for xe[x,_;, x,], v = 1,..., n. Define
a mapping T of Sy(K) into IL" by Ts = q = (¢y ,..., q»)7 Where g,(t) =
S(%,_1 + tx, — x,_)), v = 1,..., n, t [0, 1]. Let §3(K) denote the image of
Sy(K)under T. It is easily seen that q € S;(K) if and only if q'9(0) = T4’q'"(1),
j = 0,1 where ¢{’(¢) = @{(t),..., ¢(#))" and T is an isomorphic isometry
between Sy(K) and S4K). Let qq ,..., q,, be a set of n functions in II,” where
4; = (G1i yeer Gui)T> I = 1,..., n. Define the n X »n matrix W(z, A) with respect
to this set by

W(t, A) = (qu(t),.-- ga(1))
q11.(t) ql?t(t))

(qnl(t) qrm(t)
If {q, ,..., q,,} is a basis for S4(K) then we shall call W(t, 4) a basis matrix.
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Note that {g ,..., q..} is a basis for S(K) if and only if {T g, ,..., T"1q,} is a
basis for Sy(K). If W(t, A) is a basis matrix then for ¢ = (¢y ,..., ¢,)T € R",
qt) = W(t, A) c = 31, ;) € Sy(K). The following facts are easily proven
for the matrix W(t, A):

LEmMMA 1. Let B be a nonsingular n X n matrix and set W(t, A) - B =
vy(t),..., Vu(t)) where W(t, A) is a basis matrix. Then {v,(t),..., v, (¢)} is a
basis for Si(K).

LemMa 2. If W90, A) = TAWY(,A4), j=0,1 and there exists
7 € [0, 1] such that W-(r, A) exists then W(t, A) is a basis matrix.

LemMa 3. Fix 7€[0, 1]. Then corresponding to each y € R” there exists
a unique q € Sy(K) such that q(v) =y if and only if W=, A) exists for each
basis matrix W(t, A).

LemMMA 4. Let n be odd integer. Then W-I(1, A) exists for each basis
matrix W(t, A).

Define the mapping I'(H) of C[0, 1] into Sy(K) by
I(H) f = W(t, A)f,

where £ = (f(xy),..., f(x))T and W(t, A) = (q,(t)s..., q,(t)) is a basis matrix
that satisfies: (1) W(1,4) =1, 2) W(0,4) =T and (3) W0, A) =
TAW'(1, A). That such a basis matrix exists follows from Lemmas 1, 2,
and 4. Observing that I'(H) f = TI'(H) f for all f< C[0, 1], we have that

I T(H)| = || T = Sup | Wiz, 4) £,

<1

= sup (( max [{f(x;) ga(t) + - + f(x5) ganlO))

<1 1<i<n

= | max (g, + - + | gam(O)

0<1<1 1<i<n

= Jmax | Wz, Al ,

where || B ||, denotes the maximum absolute row sum of B.
Thus, we wish to estimate

inf (Orgax | W(t, Allw),

where (7 = {4: A = diag(o ,..., &) With «; > 0 for all i and T];; o; = 1}.
Since the set 7 is in a 1-1 correspondence with £ this is a rephrasing of the
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minimal periodic quadratic spline projection problem. Thus, Theorem 1
follows from

THEOREM 2. Let n be an odd integer. Then

1

1 o1 n—+1
012;2(1“ Wiz, Ao = 5 +5 2 Jnax g 71— Juax, | W(t, Dl =

2 2

where A = I is the only global minimum, (A = I is equivalent to equally
spaced knots.)

Proof" Suppose W(t’ A) = (ql seees qn) where q; = (qlz seves qni)T’

i =1,..,n Since 2, (1 — ¢)?, 2t(1 — ¢) forms a basis for I1, we may write
each g;;(t) = b{}t2 + bP(1 — t)? + 2bP¢(1 — t) and hence
Wit A) =M+ (1 —)*L 421 — 1)K,

where M, L and K are n X n real matrices. Since W(l, A) = I and
W(0, A) = T we must have

Wi, Ay =+ (1 —)*T+2t(1 —t) K.
Differentiating with respect to ¢, gives
WitA)=2I—-21—-8)T+2(1—-2)K

so that W'(0, A) = —2T 4 2K and W’'(l, A) = 21 — 2K. Thus, X must
satisfy

—T+ K =TA(I — K).
Solving for K, using the identities 74 = HTH-! and T*T = I gives
K = HT(I 4 Ty YH? + T*HT).
Next, observe that since 7" = I,
U+ —T+T?— (=127 =T (=12 =2]

since # is odd. Thus,

n—1
IA+T) =14 Y (—1p 1T

v=1
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and
2K = H(I + "‘E (— l)""lT”) (H 4 T*HT).
=1
Noting that
H = diag(h, ,..., 1) and
(H- ++ T*H-'T) — diag (—}}1— + h% h:-l + hi , 7:1,7 + 711—)

it follows that K has positive entries in all positions where either I or T
have positive entries. Since ¢%, (1 — ¢)? and #(1 — t) are nonnegative for
te [0, 1] we have that

| W, Al = max, [t2+(1 R R (R V3 ) R )]
o =1 M

1 hin

:t2+(1—t)2+2z(1—-t)2——(max h)

<i<n

=22+ 0—1P+2t1—1)n

with equally if and only if A; = max,¢;c, h; forj = 1,...,n

2@+ @+ 2B n =3+ 1. 1
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